Guest post from Tom Branson

I have tried many different ways to make chemistry make visual sense. I have struggled to make the π orbitals overlap in a Diels-Alder reaction scheme. I have toiled away building cardboard proteins to model a complex. And I still draw little cartoon viruses at work today. We cannot see exactly what goes on when proteins bump into each other or when electrons are shared between atoms, but we can attempt to visualise these natural phenomena in the best way possible. Making this both easy to understand and scientifically accurate, however, is not a simple task.

Chemical reactions and molecular interactions can be displayed in countless different ways. On the front and inside front cover of this month’s Chemical Science are two such attempts to show what is really going on in the reaction flask. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ISACS, the International Symposia on Advancing the Chemical Sciences, is a series of meetings where some of the world’s greatest researchers gather to discuss key chemistry topics. It’s a great opportunity to get up to date with the topic in hand, and the extensive poster sessions are a good chance for early career researchers to network with big-hitters in their field. To encourage more researchers to attend and present their work, Chemistry World will be sponsoring prizes for the best posters at all three ISACS meetings of 2015. Winners will receive £250, a highly sought-after Chemistry World mug and a certificate.

To take advantage of this amazing opportunity to showcase your latest research alongside leading scientists submit your poster abstract by 7 April for ISACS16, by 29 June for ISACS17 and by 7 September for ISACS18.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Heather Cassell

Throughout my time in the lab I have greatly appreciated having post docs, PhD students and technicians looking after me. So I try to be as supportive as I can to the students in the lab, especially the undergraduates. This mainly involves answering lab based questions, such as: ‘Do you know where this reagent is?’ ‘How do I get rid of this waste?’  Or ‘this is broken, what should I do?’ The questions are usually straightforward, and I’ll do my utmost best to help (unless I’m in the middle of setting up a big experiment – some people just don’t understand that setting up 64 well plates takes concentration!)

iStock

But sometimes the questions are more philosophical, asking if I enjoy working in science, or what the value of postgraduate studies such as a masters or PhD can be. The answer to the first question can vary from ‘yes, science is amazing’ to ‘no, run away whilst you can, science is awful, it has no future or jobs’, depending on how things are going in my project, how much paperwork I have to do, and how many meetings I have to attend. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Rowena Fletcher-Wood

It was the 1990s, and drug giant Pfizer was on the trail of an elusive angina medication to relieve constricted blood vessels and lower blood pressure. Pharmaceutical chemists in Sandwich, UK, were focusing their efforts on drugs that release NO (nitric oxide), a highly reactive radical that expands blood vessels and releases physical tension. One promising candidate was sildenafil, which was trialled in Morriston Hospital, Swansea.

It’s always difficult to recruit volunteers for a drug trial: even the best trials in animals, computer simulations and in vitro can’t take into account the full complexity of the human body, it’s strikingly unobvious differences from the rat and the complex interconnectedness of its mechanisms. Unexpected things happen, some of them bad, and some of them beneficial.

Sildenafil, later renamed Viagra for marketing, seemed to be a no-go for angina relief, and the trials were unsuccessful. Pfizer recalled the drug, and an unexpected thing happened: the volunteers resisted. ‘[P]eople didn’t want to give the medication back’, said Pfizer’s Brian Klee, ‘because of the side effect of having erections that were harder, firmer and lasted longer.’ (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by JessTheChemist

‘In order to avert such shameful occurrences for all future time, I decree with this day the foundation of a German national prize for art and science. Acceptance of the Nobel prize is herewith forbidden to all Germans for all future time. Executive orders will be issued by the Reich minister for popular enlightenment and propaganda.’ – Adolf Hitler, 1937

Portrait of Richard Kuhn
By ETH Zürich (ETH-Bibliothek Zürich, Bildarchiv) CC BY-SA 3.0, via Wikimedia Commons

Since my February blog post on Carl Djerassi, I have been wondering more and more about all the chemists out there who may have deserved a Nobel prize in chemistry but perhaps died before they could be awarded one or who were prevented from winning a medal for reasons out of their control.

It is well known that the second world war led to huge advancements in chemistry, with, for example, the first organophosphate compounds developed. These were initially used as deadly chemical weapons but have since changed the world through their use as pesticides. While many German scientists were advancing their field, two were forced to decline their Nobel prize in chemistry due to threats of violence and a decree by Adolf Hitler. These talented chemists were Adolf Butenandt from Austria and Richard Kuhn from Germany. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post from Tom Branson

It’s a full moon and a cold night. You may be tucked up in bed safely away from the worries of the day, but the night holds its own horrors. On a recent cover of Angewandte Chemie that peaceful night’s sleep was very much in danger of disruption from a rather unpleasant source.

© Shutterstock

Good night, sleep tight

In this disturbing image a resting girl seems to be blissfully unaware of the impending danger she faces. Personally, I would be a little more wary about getting into a bed that had ’bed bug aggregation pheromone’ written on the side of it. But if that wasn’t enough to put you off, then the array of compounds littered across the sheets should surely do the trick. These chemicals are, of course, a mix of volatile components given off by bed bugs.

The cover art accompanies an article from Gerhard Gries, of Simon Fraser University. Gries told me that he wanted to create a creepy image showing a girl ambushed by these bugs that ’come out at night to feed on us humans.’  Delightful. The photo of the bugs was taken in Gries’ lab of their very own bed bug colony. Lead author Regine Gries looks after and feeds the bugs herself, yes literally feeds the bugs herself. Bed bugs favour human blood and there’s no better source than a brave researcher. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post from Holly Salisbury, Royal Society of Chemistry

We challenged early career researchers to explain the importance of chemistry to human health in just 1 minute. The shortlisted videos are now online and we want YOU to pick your favourite entry.

The chemical sciences will be fundamental in helping us meet the healthcare challenges of the future, and we are committed to ensuring that they contribute to their full potential. As part of our work in this area, we invited undergraduate and PhD students, post-docs and early career researchers to produce an original video that demonstrates the importance of chemistry in health.

We were looking for imaginative ways of showcasing how chemistry helps us address healthcare challenges and entries could be no more than 1 minute long.

The winner will receive a £500 cash prize, with a £250 prize for second place and £150 prize for third place up for grabs too.

We want you to get involved: watch our 6 shortlisted videos and vote for your favourite before 11.59pm (GMT) 17 April 2015! (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Heather Cassell

One of the great joys of being in the lab is being in charge of your own experiments, from designing what you want to study to the interpretation of the results. Having responsibility for your work from conception to completion is challenging and ultimately rewarding.

The first step in designing your experiment is to find out what you want to know. That sounds simple and obvious, but it really is key to providing focus when planning your work. You must consider why you are doing this experiment, what it could show, how it fits with your other work, and, importantly, will you be able to interpret the results in a meaningful way, providing answers you can build on?

Inspiration for your experiments can come from diverse sources, beyond the traditional scientific lectures or academic literature, a conversation with a current or former colleague can be all it takes. But whatever the source of the idea, it is always a good idea to check if anyone else has beaten you to it by consulting the literature. Not that repeating existing work is a bad idea – you can see if existing studies are reproducible and if so, embellish or add to the data. Or you can change the design of your experiment to fit with your own previous studies, and may find something new. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Rowena Fletcher-Wood

A carbon nanotube, animated by Schwarzm, and released here under a CC-BY-SA licence

If necessity is the mother of invention, discovery is more than fuelled by fashion. After the 1985 groundbreaking discovery of the buckminsterfullerene, the ground for stable carbon allotropes with interesting shapes and properties was just that – broken. In 1990, Richard Smalley postulated the existence of carbon nanotubes as long, extended hexagon-based versions of C60, or ’buckytubes’. Carbon dirt had never looked so good before, and the mucking about began.

Graphene flakes were first isolated at Manchester University by Andre Geim and Konstantin Novoselov in 2003, when they noticed the technique surface scientists were using to clean graphite samples – peeling off the contaminated upper layer using pieces of sellotape. The pieces of sellotape went in the bin, but Geim and Novoselov fished them out again – and started painstakingly peeling off thinner and thinner layers until they made 1 atom thick graphene. They were awarded the Nobel prize for physics in 2010. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Last week, we heard from Derek Lowe about the evocative smells associated with working in the lab. Inspired by Derek’s olfactory adventures, the Chemistry World and Education in Chemistry teams shared their own experiences.

This week, we hear from our regular guest bloggers Tom Branson, Heather Cassell, JessTheChemist and Rowena Fletcher-Wood about their own smelly memories, along with a few more from the #labsmells hashtag.

Rowena Fletcher-Wood

Chemistry has ruined me for marzipan.

Not just marzipan, of course, almonds, almond flavouring, even apricots. If you waft a piece of almond cake under my nose unexpectedly, I will automatically give an sudden and violent sniff, and recoil physically. I can’t help it, it’s an instinct, and that smell is the smell of hydrogen cyanide. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

« Previous PageNext Page »