Guest post from Tom Branson

In a bold move by Organic and Biomolecular Chemistry, the journal has unveiled the latest superhero in the fight to save the common scientist from the ruthlessness of today’s laboratories.

With great power comes great selectivity

Standing firm with test tube in hand, Raney Cobalt-man is a new character from Catalyst Comics. The star wears a rather tight, bright cobalt blue coloured outfit, reflecting one of the element’s most notorious uses. How Raney Cobalt-man gained his powers, we will never know. But perhaps it was in a careless lab accident, and if so, he has certainly learnt his lesson. Now with goggles and elbow-length gloves (not to mention a full body suit and special groin area protection), Raney Cobalt-man is a true ambassador for PPE.

(more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Jen Dougan

I attended five weddings this year, between February and October, making 2014 most definitely the Year of the Wedding. Each day was unique and reflected closely the couple, their relationship, vision and hopes for the future.  And while there was a broad range of traditions at each, whether religious or humanist approaches, one tradition – the exchange of rings – provided a common element throughout.

The element is, of course, gold. But what is the chemistry of this symbol that is ritually shared as a sign of commitment and lasting love?

© Murray Robertson / Visual Elements

Gold is the most noble of metals, it doesn’t corrode or oxidise in the Earth’s moist, oxygen-rich atmosphere. Ductile and malleable, it can be fashioned at will and, since it doesn’t tarnish, is an ideal material for producing jewellery. The decorative attributes of gold have long been coveted – examples of gold jewellery have been found in the tombs of the Queens of Egypt and Sumeria, 3000 years BC. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by JessTheChemist

‘Where the telescope ends, the microscope begins. Which of the two has a grander view?’ – Victor Hugo

In 1873, German physicist Ernst Abbe reported that the resolution limit of the optical microscope was 0.2 micrometres. Although this still remains true, recent work in the field of microscopy – specifically Stimulated Emission Depletion (STED) microscopy and single-molecule microscopy – has allowed scientists to visualise molecules smaller than this limit. This is accomplished by tagging molecules with fluorescent labels, which allows a more detailed picture to be visualised. On Wednesday 8th October 2014 Eric Betzig, Stefan Hell and William Moerner were awarded the Nobel prize in chemistry for their ground-breaking work in ‘the development of super-resolved fluorescence microscopy’. You can learn more about the ins and outs of the Nobel prize winners’ work by reading the recent Chemistry World article.

I am interested in finding out how chemists are connected to each other, and in particular, investigating whether your likelihood of winning a Nobel prize is increased by having a high number of laureates in your family tree.  It is also interesting to see how closely related, if at all, are the scientists that share a prize. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Heather Cassell

Space in the lab is always at a premium; you need more things than you have space for, so it makes sense for multi-group labs to share equipment, consumables and buffer stocks that everyone uses. This inevitably causes trouble when someone doesn’t look after the equipment, or fails to restock things after using them.

It is a frequent problem. You are about to start an experiment, so you’ve checked that the equipment will be free, you’ve planned your samples and now you just need to dilute from a communal buffer stock. All too often there is only a dribble left, so you have to make a fresh stock of buffer before you start, delaying your experiment by precious minutes. Your next stop is the communal chemical stocks, where you find there is either nothing left or such a trifling amount that it is of no use to anyone. This often prompts sarcastic mutterings of ‘how considerate’, or something rather more profane. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

With just under week until the announcements start, Nobel prize fever is officially here.

The official shortlist is shrouded in secrecy, giving those making their predictions about who might win little to go on – but that hasn’t stopped them.

Nobel medal

As usual, Thomson Reuters have released their Nobel forecast, which uses citation numbers and other statistical wizardry to predict the winners in each category. This approach has successfully predicted 35 Nobel prize winners over the past 12 years.

This time round they highlight three possible chemistry winners – the inventors of the organic light emitting diode (Ching Tang and Steven Van Slyke), RAFT polymerization (Graeme Moad, Ezio Rizzardo, San Thang) and mesoporous materials (Charles Kresge, Ryong Ryoo, Galen Stucky).

Elsewhere, less official speculations – perhaps based more on a hunch – have begun flying around.  On the Everyday Scientist blog, chemist Sam Lord has put together some suggestions. Like the number crunchers at Reuters, Lord has some past successes (though he didn’t predict last year’s computational chemistry winners - Karplus, Levitt and Warshel). He thinks the 2014 prize could go to a key historical invention, such as the contraceptive pill, or the lithium-ion battery (also a top pick for The Curious Wavefunction blogger Ashutosh Jogalekar), but also mentions broader areas such as microfluidics, nanotechnology and next-generation sequencing. If last year is anything to go by, there’s much to be said for gut feeling as well as advanced number crunching. As always, we’ll just have to wait a little longer for that all-important announcement from Sweden.

If you want to get into the Nobel spirit and hear more about the possible winners this year, our features editor Neil Withers joined representatives from Nature Chemistry and C&EN to begin the countdown to the 2014 chemistry Nobel in a Google hangout – watch the whole discussion here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Rowena Fletcher-Wood

I first heard the story of the discovery of nylon during a chemistry class in school – it was told as a serendipitous discovery. A young lab assistant, clearing up at the end of a long day, clumsily poured two mixtures in together and noticed a precipitate. Dipping in a stirring rod, he pulled out a thin string, which he stretched out into a tough, translucent fibre. He realised the potential of his discovery, reported it to his superiors and left them to the tiresome job of working out what he had done to make it.

The invention of nylon created a revolution in hosiery
©Shutterstock

It’s funny how we use accident to shape our understanding of discovery and achievement, as though we want to excuse hard work and apologise for years of learning. It’s somehow disappointing, unromantic: the story of research whisks away that tantalising fantasy of stumbling upon treasure, reserving discovery for the experts.

The real story of nylon, interesting though it may be, is a bit of stretch from serendipity. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post from Tom Branson

Inside Back Cover: Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsin B Inhibitor (Angew. Chem. Int. Ed. 38/2014)
Angewandte Chemie International Edition
Volume 53, Issue 38, pages 10251-10251, 22 JUL 2014
DOI: 10.1002/anie.201406845
http://onlinelibrary.wiley.com/doi/10.1002/anie.201406845/full#car1

Science fiction often predicts future advances and has even prompted the development of some technologies. So should we be taking advantage of this association? Can we use a science fiction setting to showcase science fact? That idea is exactly what the latest cover of Angewandte Chemie has attempted to do. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Jen Dougan

Of all the components of a cooked breakfast, a perfectly fried egg is arguably the most important. It’s for that reason, despite the myriad of other factors to consider – size/weight/colour/celebrity chef endorsement – that a frying pan’s non-stick credentials are key.

Polytetrafluoroethylene (PTFE), the ‘big daddy’ of non-stick, was discovered by accident in 1938. While attempting to make a new CFC refrigerant, American industrial research chemist Roy J. Plunkett noticed that a cylinder of tetrafluoroethylene had stopped flowing but its weight suggested something still inside. In his own words, ‘more out of curiosity… than anything else,’ Plunkett and his assistant cut open the cylinder to discover it was packed at the bottom and sides with a white, waxy solid. Analysis showed that the material was chemically inert, thermally and electrically resistant, and had very low surface friction. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

My name is Jen Dougan and I am a Field Applications Scientist with an SME, developing diagnostic tools for clinical analysis. My job involves working with our R&D teams and customers in the field to drive and support product and applications development.

I recently moved into this position after a PhD and two post-docs (and a brief stint in science policy) in bio-nano-analytical chemistry. What I’ve loved about the transition into this role is the chance to ask questions and provide answers in a fast-paced, rigorous environment. It’s been fantastic to see some of the techniques used through my PhD and post-docs in action in a clinical setting.

Real world applications of chemical research are a central theme of this blog. I’ll be contributing regular posts here, to explore the chemistry in our every day lives. From the clothes we wear to the goods we use, it really is a chemical world.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by JessTheChemist

‘Scientists have a responsibility, or at least I feel I have a responsibility, to ensure that what I do is for the benefit of the human race’ – Harry Kroto

Thank you for your nominations for this month’s blog post. It was great to see so many of you getting involved in this series, highlighting interesting Nobel laureates for me to cover. However, I could only pick one winner, so I decided to write about Harry Kroto, inspired by this tweet from Bolton School:

 

Harry Kroto has a formidable CV. Not only is he a highly distinguished and talented chemist, but he does a great deal to improve the teaching of chemistry to future generations. This has included setting up the not-for-profit Vega Science Trust, which helps scientists communicate with the public at large, and even returning to his childhood school to build Buckyballs with students. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

« Previous PageNext Page »