Chemistry in History



Guest post by Rowena Fletcher-Wood

It was the 1990s, and drug giant Pfizer was on the trail of an elusive angina medication to relieve constricted blood vessels and lower blood pressure. Pharmaceutical chemists in Sandwich, UK, were focusing their efforts on drugs that release NO (nitric oxide), a highly reactive radical that expands blood vessels and releases physical tension. One promising candidate was sildenafil, which was trialled in Morriston Hospital, Swansea.

It’s always difficult to recruit volunteers for a drug trial: even the best trials in animals, computer simulations and in vitro can’t take into account the full complexity of the human body, it’s strikingly unobvious differences from the rat and the complex interconnectedness of its mechanisms. Unexpected things happen, some of them bad, and some of them beneficial.

Sildenafil, later renamed Viagra for marketing, seemed to be a no-go for angina relief, and the trials were unsuccessful. Pfizer recalled the drug, and an unexpected thing happened: the volunteers resisted. ‘[P]eople didn’t want to give the medication back’, said Pfizer’s Brian Klee, ‘because of the side effect of having erections that were harder, firmer and lasted longer.’ (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by JessTheChemist

‘In order to avert such shameful occurrences for all future time, I decree with this day the foundation of a German national prize for art and science. Acceptance of the Nobel prize is herewith forbidden to all Germans for all future time. Executive orders will be issued by the Reich minister for popular enlightenment and propaganda.’ – Adolf Hitler, 1937

Portrait of Richard Kuhn
By ETH Zürich (ETH-Bibliothek Zürich, Bildarchiv) CC BY-SA 3.0, via Wikimedia Commons

Since my February blog post on Carl Djerassi, I have been wondering more and more about all the chemists out there who may have deserved a Nobel prize in chemistry but perhaps died before they could be awarded one or who were prevented from winning a medal for reasons out of their control.

It is well known that the second world war led to huge advancements in chemistry, with, for example, the first organophosphate compounds developed. These were initially used as deadly chemical weapons but have since changed the world through their use as pesticides. While many German scientists were advancing their field, two were forced to decline their Nobel prize in chemistry due to threats of violence and a decree by Adolf Hitler. These talented chemists were Adolf Butenandt from Austria and Richard Kuhn from Germany. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Rowena Fletcher-Wood

Open your eyes and take a closer look: sometimes that’s all it takes to realise a new invention has been with you all along, stuck, perhaps, to the cuffs of your trousers and the fur of your pointer. Like the burrs of the burdock, evolved to stick to the fur of animals, transporting the seeds far and wide to fall on new ground.

Swiss amateur mountaineer Georges de Mestral had been hunting in the French Alps one summer evening in 1948, when exactly this occurred. He had obviously encountered burrs before, but for the first time his mind connected an observation (the sticky burrs) and an application (fashion) – it was a scientific portmanteau or ‘blend’ of two ideas, contracting their meanings into a single new commodity: Velcro. The name is a portmanteau too, a combination of the French words velour and crochet: the soft fabric side and the hooked. De Mestral had stumbled upon a new way of fixing clothing, but was it such an accident? Louis Pasteur, scientist and inventor of the Pasteurisation process, famously said ‘in the fields of observation, chance favours only the prepared mind.’ He had a point. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Jen Dougan

‘May it be a light to you, in dark places. When all other lights go out.’
J. R. R. Tolkien

Yesterday saw the opening ceremony to mark the start of the International Year of Light (IYL). Today scientists and policy makers will meet in Paris for day two of the celebrations. Designated by the United Nations, the IYL aims to increase awareness about the importance of light in our modern and developing world, such is the breadth of light–based technologies – from biological sensing to next generation light emitting diodes (LEDs). Undoubtedly, our world is enriched by harnessing the energy of light, and one of the core aims of IYL is to focus on the plight of 1.5 billion of the world’s inhabitants for whom sunset means darkness.

Blue light emitting diodes (Blue LED). Image by Gussisaurio at wikipedia (CC-BY-SA)

With little or no access to electrical lighting, many rural communities in the developing world have limited ability to read after sundown, have restricted working hours, and hospitals have to power down the lights in the evening – limiting healthcare options. Many families rely on the use of paraffin or kerosene lamps. This isn’t without problems, kerosene is a flammable hydrocarbon producing toxic fumes when burned and is a significant fire-safety hazard. Attempting to address this, the IYL ‘study after sunset’ campaign seeks to promote the use of solar powered LED lights in the communities that need them most.

Anyone who has handled a traditional incandescent lightbulb can attest to its inefficiency. Producing significant amounts of heat (capable of burning fingers!), incandescent bulbs are economically and environmentally wasteful. But alternatives do exist. LEDs generate far more light, measured in lumens per Watt (lm/W), than standard incandescent or fluorescent lighting (Figure 1). Of course, the use of LEDs helps to reduce bills and energy consumption and, considering that lighting accounts for ~25% of electricity usage in developed countries, that presents a significant reduction. It is their efficiency and bulb lifetime of 100,000 hours (an order of magnitude greater than incandescent bulbs) that may enable LEDs to illuminate lives the world over. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Rowena Fletcher-Wood

It is Christmastime, and the season of light: everywhere you look, particularly after dark, is the twinkle of hundreds of little lights. As 2015 approaches, the International Year of Light is also being kindled into action – a year designed to make us think about light technologies and global challenges in energy. So let’s start now, and out of the dark.

One of the earliest human light technologies was the match. What do you need to make fire? Oxygen, fuel and an ignition source – simple enough in theory, but not so much in practice. Fires just don’t start spontaneously. Before matches, ignition sources included flint and tinder, or a magnifying glass which, naturally, only worked on sunny days, when you are least in need of fire. But luckily, something was spontaneous: the accidental invention of matches.

Matches had nearly been discovered more than once. Having synthesised phosphorous in 1680, Robert Boyle showed awestruck onlookers how this new material created fire when rubbed with sulfur, but the combustion exercise was never put to practical use and remained merely entertainment for wealthy dabblers. He wasn’t the first to make such novelties either – as far back as 950 AD, Chinese ‘Records of the unworldly and strange’ mention ‘light-bringing slaves’ (later ‘fire-inch sticks’) that use sulfur to create fire fast from a small spark or dying embers. In 1805, a French chemist, Jean Chancel, dipped a wooden splint in sugar, potassium chlorate, and sulfuric acid, creating an explosion. It was expensive, dangerous and gave off a foul, poisonous odour. But all of these were chemical matches: they required mixing the right things together at the right time to create an exothermic reaction. The first friction match was created by accident, by apothecary John Walker in 1826. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by JessTheChemist

In 1965 Robert Burns Woodward won the Nobel prize for chemistry for the synthesis of complex organic molecules, including natural products such as cholesterol, strychnine, chlorophyll, cephalosporin, and colchicine. Unusually, Woodward won the prize for excellence in the field of organic chemistry, and not for a specific chemical reaction. Not unlike many organic chemists I know, Woodward was extremely dedicated to his work. Rumour has it that Woodward first crystallized the steroid Christmasterol on Christmas day. I commend the work ethic but I really hope that none of you are working on Christmas day!

Woodward began his university life in 1933 at Massachusetts Institute of Technology. A year later he was excluded because he neglected his studies. Another year later he was readmitted and in 1936 he received his Bachelor of Science degree. Astonishingly, it took just one more year for him to gain his doctorate from the same institution. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

‘I do not think it should appear in its present form’. Many a dejected researcher has read those words when their paper is summarily rejected by a journal. Rest assured, however, even the greatest scientific minds have read them on occasion.

Issue one of the Philosophical Transactions
© The Royal Society

In 1839, Charles Darwin submitted a paper on the geology of Glen Roy in the Scottish Highlands to the Royal Society’s Philosophical Transactions. He received a response from Adam Sedgwick, who would later become one of Darwin’s greatest critics. The Society Fellow admired Darwin’s insight but bemoaned his long-winded explanations, rejecting the paper in its present form. It was the only paper Darwin submitted to the journal.

Sedgwick’s critique of Darwin’s work forms part of a new exhibition at the Royal Society about the history of the Philosophical Transactions. Detailing the turbulent beginnings of the journal – which was first published during the Great Plague of London in 1665 – through to the modern publication, the exhibit shines a light on its colourful history. The extensive display, developed by the Royal Society and researchers at the University of St. Andrews, UK, also reveals the birth of the modern peer review process. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Rowena Fletcher-Wood

Excited, Mary Hunt tipped out the produce of her shopping: a large moulded cantaloupe. She had come across the cantaloupe by chance, and the ‘pretty, golden mould’ had proved irresistible. She had discovered the Penicillium chrysogeum fungus, a species that turned out to produce 200 times the volume of penicillin as Fleming’s variety. It was a serendipitous discovery, and vital at a time when the greatest challenge facing medicine was producing enough of the antibiotic to treat all of the people who needed it.

Hunt’s finding has been barely noticed beside the original accidental discovery: Fleming’s return from holiday to find a ‘fluffy white mass’ on one of his staphylococcus culture petri dishes. Fleming was often scorned as a careless lab technician, so perhaps the contamination of one of his dishes – which had been balanced in a teetering microbial tower in order to free up bench space – was not that unexpected. But Fleming had the presence of mind to not simply dispose of the petri dish, but to first stick it beneath a microscope, where he observed how the mould inhibited the staphylococcus bacteria. Competition between bacteria and fungi was well known and, in fact, when Fleming published in the British Journal of Experimental Pathology in June 1929, the potential medical applications of penicillin were only speculative. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by JessTheChemist

‘Where the telescope ends, the microscope begins. Which of the two has a grander view?’ – Victor Hugo

In 1873, German physicist Ernst Abbe reported that the resolution limit of the optical microscope was 0.2 micrometres. Although this still remains true, recent work in the field of microscopy – specifically Stimulated Emission Depletion (STED) microscopy and single-molecule microscopy – has allowed scientists to visualise molecules smaller than this limit. This is accomplished by tagging molecules with fluorescent labels, which allows a more detailed picture to be visualised. On Wednesday 8th October 2014 Eric Betzig, Stefan Hell and William Moerner were awarded the Nobel prize in chemistry for their ground-breaking work in ‘the development of super-resolved fluorescence microscopy’. You can learn more about the ins and outs of the Nobel prize winners’ work by reading the recent Chemistry World article.

I am interested in finding out how chemists are connected to each other, and in particular, investigating whether your likelihood of winning a Nobel prize is increased by having a high number of laureates in your family tree.  It is also interesting to see how closely related, if at all, are the scientists that share a prize. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Rowena Fletcher-Wood

I first heard the story of the discovery of nylon during a chemistry class in school – it was told as a serendipitous discovery. A young lab assistant, clearing up at the end of a long day, clumsily poured two mixtures in together and noticed a precipitate. Dipping in a stirring rod, he pulled out a thin string, which he stretched out into a tough, translucent fibre. He realised the potential of his discovery, reported it to his superiors and left them to the tiresome job of working out what he had done to make it.

The invention of nylon created a revolution in hosiery
©Shutterstock

It’s funny how we use accident to shape our understanding of discovery and achievement, as though we want to excuse hard work and apologise for years of learning. It’s somehow disappointing, unromantic: the story of research whisks away that tantalising fantasy of stumbling upon treasure, reserving discovery for the experts.

The real story of nylon, interesting though it may be, is a bit of stretch from serendipity. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Next Page »