Heather Cassell


Guest post by Heather Cassell

Over the course of your life in the lab you can get to learn many different experimental techniques, and for most people this can be both very interesting and very exciting – the intrigue of novelty. But you can also get stuck using just a few techniques over and over, which can be frustrating and reduces the excitement to drudgery. Sometimes repetition is necessary if your experiment doesn’t go so well, if the process needs optimising, or if you have many similar samples to process in the same way. If the repetition is simply due to a large number of samples then perseverance is required to get the results you need. If the quality of your science depends on a little drudgery, then that’s what it takes.

Groundhog in Minneapolis – Image by Marumari at the English language Wikipedia, CC-BY-SA-3.0 or GFDL

But if there are problems with the experiment itself, a good place to start is repeating the experiment without change, to eliminate the possibility that something was set up incorrectly. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Heather Cassell

As we get deeper into December, it’s beginning to look a lot like Christmas, holiday season festivities, and researchers are thinking about having some time away from the lab. But for some December can lead to a blue Christmas; the approach of the holidays can fill certain groups of lab denizens, especially students, with fear. Students have to contend with coursework deadlines approaching rapidly – and there are the January exams to consider – so they’re rarely heard to say ‘thank God it’s Christmas.’ This also means it’s not the most wonderful time of the year for those who have to mark the coursework too.

And so, the start of December ‘tis the season for careful lab work planning; you must make the most of the time you have left in the lab before you leave, otherwise you’ll risk abandoning an experiment or driving home for Christmas with work on your mind. Worse still, poor planning means you may have to come in at awkward times over the holidays, or even miss the opportunity to be rockin’ around the Christmas tree, enjoying the mistletoe and wine at the lab Christmas party!

When it comes to Christmas decorations offices are fairly easy to decorate. There are very few restrictions on what you can put up (it’s more down to taste, or in some cases lack of taste), so you can deck the halls with pretty much whatever you like. But health and safety rules in the lab mean that many decorations are not suitable for use, as they constitute a fire hazard. This means the offices tend to get all of the silver bells, the holly and the ivy, but the labs can seem so very bare in comparison, the non-scientists might ask even each other ‘do they know it’s Christmas?’ (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Heather Cassell

In general, labs are large, light and airy places, filled with racks of consumables, glinting glassware that reflects and enhances the light, large bits of kit that you use in your day to day experiments, and – most of the time – other people. But occasionally (or quite frequently, depending on the nature of your project) your work requires you to visit a piece of rarefied, specialist equipment that lives in a room all of its own.

© OJO Images Ltd / Alamy Stock Photo

There are many reasons why kit may be placed in solitary confinement. There are the large, sensitive and fabulously expensive devices that necessitate careful handling. There are those that require the use of light sensitive reagents, or are themselves light sensitive, and exist in state of permanent darkness. Others are separated from the main lab for researchers’ own health and safety. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Heather Cassell

Sometimes life in the lab can be a quiet and lonely affair. Isolation can creep in if your experiment requires long and unsociable hours, or you’re using a specialised bit of equipment that lives on its own, or simply when your lab mates are not around. The fact that labs often buzz with the hustle and bustle of science in action makes these contrasting moments all the more stark.

©iStock

Not that isolation is always a bad thing – if you are working hard and on a project that takes a lot of concentration then it can be a relief to be on your own. Being antisocial can allow you to get on with what you are doing without being disturbed. But if you have gaps in what you are doing – between multiple short incubation times or centrifuge runs, for example – then being on your own can be a drag and the few minutes you need to wait can feel like an age.

So I keep myself busy: I get useful small lab tasks done (with one eye on the clock), begin planning my next experiment, make sure my notebook is up to date. Sometimes it’s possible to simply sit and enjoy the peace and solitude. If you are lucky enough to work in a lab where you can listen to music on either a communal radio or a personal stereo, then this can really help to pass the time, and as you are on your own you can put on any music that you like, as long as it’s not too loud! (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Heather Cassell

Some experiments fail. Despite your best efforts, and especially for experiments that take many steps or a long time to run, you often won’t find out if they have worked until the very end.

Image By Tweenk (Own work) [CC BY 3.0], via Wikimedia Commons

As I’m sure you can imagine, this is a source of great frustration for a lab-based scientist. So much of your time is dedicated to setting up and running your experiment. Once you’ve made a plan and began the experiment, you have no choice but to blindly carry on assuming everything is fine, before you reach the end and discover whether or not it has worked. If it had then great! You can get on with the important business of analyzing your results to see how they fit in with the rest of your work. If your experiment didn’t work, you need to start the tortuous process of troubleshooting to find out what went wrong.

I have to confess that I enjoy the in between steps, the calm before the storm. There is a certain happiness in not knowing, freeing you up to concentrate on each step of your work, rather than the overall result. At this stage there is positivity and hope that your meticulous planning is going to give you the results you need. This positive attitude can last right up until the results come in, when the illusion can be shattered by the lovely picture of your positive controls and not much else.

So what to do now? Small changes to one of the steps in your process can make a huge difference to your results. Having a good set of both positive and negative controls can be a great help during troubleshooting: if the results show just your positive controls you know the problem is with your samples, if there are no results you know the problem is with the experiment. Now where will I find that error?

It is even more frustrating if you have inherited the protocol, or are trying to replicate one given in a paper. Even worse is a failing in a method you’ve had success with in the past! You can resolve many problems with patience and dedication, but sometimes it’s worth running the problem by someone else just to check you are not making a simple mistake that you have overlooked. Is the incubator at the wrong temperature? Have you added the wrong antibiotic? (Both common sleep deprivation related problems.)

You can spend days, weeks, even months tweaking the conditions of your experiment to make it work. But it is important that you don’t keep going round in circles or blindly repeating yourself, take notes, take a step back or take a deep breath and ask for help! Everyone has bad days in the lab, it’s how you react to them that shows how well suited you are to science.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Heather Cassell

Working in the lab over time teaches you many new skills. These include the many specific techniques your research demands as well as the enhanced organisation and time management skills you need to keep things running smoothly. But lab work can also teach you to become fairly ambidextrous.

© Shutterstock

You often need enough strength and agility in your non-dominant hand to handle tricky objects while your dominant hand is busy, such as opening and holding a bottle while using a pipette to remove the amount of liquid you need.

Time and practice lets you build up a good level of dexterity in both hands, but there are still many things in the lab that can be difficult to use (or just annoying) if, like me, you are left handed. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Heather Cassell

When starting a new experiment, it is great if there is a standard lab protocol (written by someone else in the lab) that you can use. These tried and tested methods usually increase the chance of your experiment working. On receiving the new protocol, the first thing you need to do is read the method carefully so you can plan accordingly; I’ve been caught out before – I found out part way through what I thought was a two hour incubation that it was really 12 hours, so I ended up having to finish off the experiment on Saturday!

Shelf of chemical bottles

© Shutterstock

(more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Heather Cassell

Throughout my time in the lab I have greatly appreciated having post docs, PhD students and technicians looking after me. So I try to be as supportive as I can to the students in the lab, especially the undergraduates. This mainly involves answering lab based questions, such as: ‘Do you know where this reagent is?’ ‘How do I get rid of this waste?’  Or ‘this is broken, what should I do?’ The questions are usually straightforward, and I’ll do my utmost best to help (unless I’m in the middle of setting up a big experiment – some people just don’t understand that setting up 64 well plates takes concentration!)

iStock

But sometimes the questions are more philosophical, asking if I enjoy working in science, or what the value of postgraduate studies such as a masters or PhD can be. The answer to the first question can vary from ‘yes, science is amazing’ to ‘no, run away whilst you can, science is awful, it has no future or jobs’, depending on how things are going in my project, how much paperwork I have to do, and how many meetings I have to attend. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Heather Cassell

One of the great joys of being in the lab is being in charge of your own experiments, from designing what you want to study to the interpretation of the results. Having responsibility for your work from conception to completion is challenging and ultimately rewarding.

The first step in designing your experiment is to find out what you want to know. That sounds simple and obvious, but it really is key to providing focus when planning your work. You must consider why you are doing this experiment, what it could show, how it fits with your other work, and, importantly, will you be able to interpret the results in a meaningful way, providing answers you can build on?

Inspiration for your experiments can come from diverse sources, beyond the traditional scientific lectures or academic literature, a conversation with a current or former colleague can be all it takes. But whatever the source of the idea, it is always a good idea to check if anyone else has beaten you to it by consulting the literature. Not that repeating existing work is a bad idea – you can see if existing studies are reproducible and if so, embellish or add to the data. Or you can change the design of your experiment to fit with your own previous studies, and may find something new. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Heather Cassell

In the lab, you develop a fondness for working with certain things: compliant equipment, pleasant smelling solvents, easy-to-culture bacteria. One of my favourites are fluorescent proteins – their bright colours can make even the dullest day that little bit more cheery. I find them a joy to work with not only because of their beauty, but because the source of that beauty also makes them easy to work with.

A San Diego beach scene drawn with an eight colour palette of bacterial colonies expressing fluorescent proteins derived from GFP and the red-fluorescent coral protein dsRed. The colors include BFP, mTFP1, Emerald, Citrine, mOrange, mApple, mCherry and mGrape. Artwork by Nathan Shaner, photography by Paul Steinbach, created in the lab of Roger Tsien in 2006. (CC-BY-SA)

A good example of this is in protein production. During expression in E. coli, you often cannot tell how well expression of a colourless protein is going, but because fluorescent proteins will produce a colour even at a relatively low concentrations, it can be seen while the cells are still growing. This allows you to keep track of your progress, answering key questions like: do I have any protein? Or did I add the chemical I need to produce the protein? (The latter being a not uncommon mistake for a sleep-deprived scientist.) Getting answers to these visually means no lengthy purification procedure, avoiding the inevitable disappointment.

The colouration continues to be helpful as you go through the protein purification process: you can easily see if your protein has been released from the cells, whether it has bound to the column, if it has been released from the column and so on. Again, each of these steps requires another means of detection in colourless proteins. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Next Page »