January 2015



Guest post by Heather Cassell

In the lab, you develop a fondness for working with certain things: compliant equipment, pleasant smelling solvents, easy-to-culture bacteria. One of my favourites are fluorescent proteins – their bright colours can make even the dullest day that little bit more cheery. I find them a joy to work with not only because of their beauty, but because the source of that beauty also makes them easy to work with.

A San Diego beach scene drawn with an eight colour palette of bacterial colonies expressing fluorescent proteins derived from GFP and the red-fluorescent coral protein dsRed. The colors include BFP, mTFP1, Emerald, Citrine, mOrange, mApple, mCherry and mGrape. Artwork by Nathan Shaner, photography by Paul Steinbach, created in the lab of Roger Tsien in 2006. (CC-BY-SA)

A good example of this is in protein production. During expression in E. coli, you often cannot tell how well expression of a colourless protein is going, but because fluorescent proteins will produce a colour even at a relatively low concentrations, it can be seen while the cells are still growing. This allows you to keep track of your progress, answering key questions like: do I have any protein? Or did I add the chemical I need to produce the protein? (The latter being a not uncommon mistake for a sleep-deprived scientist.) Getting answers to these visually means no lengthy purification procedure, avoiding the inevitable disappointment.

The colouration continues to be helpful as you go through the protein purification process: you can easily see if your protein has been released from the cells, whether it has bound to the column, if it has been released from the column and so on. Again, each of these steps requires another means of detection in colourless proteins. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Isobel Hogg, Royal Society of Chemistry

Can you explain the importance of chemistry to human health in just 1 minute? If you’re an early-career researcher who is up to the challenge, making a 1 minute video could win you £500.

We are looking for imaginative ways to showcase how chemistry helps us address healthcare challenges. Your video should be no longer than one minute, and you can use any approach you like.

The winner will receive a £500 cash prize, with a £250 prize for second place and £150 prize for third place up for grabs too. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Rowena Fletcher-Wood

Open your eyes and take a closer look: sometimes that’s all it takes to realise a new invention has been with you all along, stuck, perhaps, to the cuffs of your trousers and the fur of your pointer. Like the burrs of the burdock, evolved to stick to the fur of animals, transporting the seeds far and wide to fall on new ground.

Swiss amateur mountaineer Georges de Mestral had been hunting in the French Alps one summer evening in 1948, when exactly this occurred. He had obviously encountered burrs before, but for the first time his mind connected an observation (the sticky burrs) and an application (fashion) – it was a scientific portmanteau or ‘blend’ of two ideas, contracting their meanings into a single new commodity: Velcro. The name is a portmanteau too, a combination of the French words velour and crochet: the soft fabric side and the hooked. De Mestral had stumbled upon a new way of fixing clothing, but was it such an accident? Louis Pasteur, scientist and inventor of the Pasteurisation process, famously said ‘in the fields of observation, chance favours only the prepared mind.’ He had a point. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Jen Dougan

‘May it be a light to you, in dark places. When all other lights go out.’
J. R. R. Tolkien

Yesterday saw the opening ceremony to mark the start of the International Year of Light (IYL). Today scientists and policy makers will meet in Paris for day two of the celebrations. Designated by the United Nations, the IYL aims to increase awareness about the importance of light in our modern and developing world, such is the breadth of light–based technologies – from biological sensing to next generation light emitting diodes (LEDs). Undoubtedly, our world is enriched by harnessing the energy of light, and one of the core aims of IYL is to focus on the plight of 1.5 billion of the world’s inhabitants for whom sunset means darkness.

Blue light emitting diodes (Blue LED). Image by Gussisaurio at wikipedia (CC-BY-SA)

With little or no access to electrical lighting, many rural communities in the developing world have limited ability to read after sundown, have restricted working hours, and hospitals have to power down the lights in the evening – limiting healthcare options. Many families rely on the use of paraffin or kerosene lamps. This isn’t without problems, kerosene is a flammable hydrocarbon producing toxic fumes when burned and is a significant fire-safety hazard. Attempting to address this, the IYL ‘study after sunset’ campaign seeks to promote the use of solar powered LED lights in the communities that need them most.

Anyone who has handled a traditional incandescent lightbulb can attest to its inefficiency. Producing significant amounts of heat (capable of burning fingers!), incandescent bulbs are economically and environmentally wasteful. But alternatives do exist. LEDs generate far more light, measured in lumens per Watt (lm/W), than standard incandescent or fluorescent lighting (Figure 1). Of course, the use of LEDs helps to reduce bills and energy consumption and, considering that lighting accounts for ~25% of electricity usage in developed countries, that presents a significant reduction. It is their efficiency and bulb lifetime of 100,000 hours (an order of magnitude greater than incandescent bulbs) that may enable LEDs to illuminate lives the world over. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post from Tom Branson

It’s a new year and therefore a new set of exciting cover art awaits us. Last year gave us some great examples of artistic flair matched with clear science communication, as well as a good few covers that can be described as nothing but bizarre. Either way, they got my attention.

But why do authors want their work on a front cover and what does it actually mean to the scientists who designed them? Instead of surging ahead with my own opinions, I thought that this time I should get some answers from the creators themselves. Focusing on Chemical Science, I tracked down the corresponding authors responsible for some of the cover art during 2014 and asked them a few simple questions to gather a small insight into the minds of these artists.

Why would anyone want to create a cover image?

Well, what’s the point? My first thought was simply about extra exposure. And yes, the overwhelming response I received was about gaining extra attention, raising the visibility of their work and attracting more readers. Everybody seemed to agree on this fact. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)