August 2014



Guest post by Rowena Fletcher-Wood

Scurvy plagued early sailors, and although many treatments were tried and promoted, a simple cure was masked for centuries behind a series of mistakes and misunderstandings.

This story begins at sea, long into a voyage after the fresh food stock had long run out and the sailors were left with only grains, hardtack and cured meats to eat. The sailors would become desperate as scurvy began to set in. Sailors were lost to scurvy in vast numbers, with estimates as high as two million lives lost between 1500–1800 AD.

©Shutterstock

(more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post from Tom Branson

A bright new reaction scheme has found its way to the cover of Inorganic Chemistry. Not content with old standard representations, this journal has been given the professional touch.

Framing metal complexes

The image puts a well needed shine on the conventional reaction scheme and perhaps suggests that we should now be teaching undergrads to paint as well as honing their ChemDraw skills. Two states of a porphyrin derivative complexed with zinc are shown here framed in audacious, golden swirls. And why not? If you’re proud of your work then go ahead and put a huge golden frame around it. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by JessTheChemist

‘The noblest exercise of the mind within doors, and most befitting a person of quality, is study’ – Ramsay

A few years ago I had the pleasure of meeting Jack Dunitz at the Swiss Federal Institute of Technology (ETH) in Zurich. Little did I know that he was the academic great-great-grandson of the UK’s first chemistry Nobel Laureate, Sir William Ramsay. After discovering this connection, I decided to delve deeper to see which other chemistry legends Ramsay is connected to.

Ramsay began his career as an organic chemist, but his prominent discoveries were in the field of inorganic chemistry. At the meeting of the British Association in August 1894, Ramsay and Lord Rayleigh both announced the discovery of argon, after independent research. Ramsay then discovered helium in 1895 and systematically researched the missing links in this new group of elements to find neon, krypton, and xenon1. These findings led to Ramsay winning his Nobel prize in 1904 in ‘recognition of his services in the discovery of the inert gaseous elements in air, and his determination of their place in the periodic system’. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

I am a postdoctoral fellow at the Institute of Process Research and Development (iPRD) at the University of Leeds. My research is on the synthesis of chiral amines relevant to the pharmaceutical industry but I have a general interest in organic chemistry, catalysis and sustainable methodologies. When I am not in the lab, I blog at The Organic Solution on a range of topics including chemical research, postdoc life and outreach experiences. Recently, I have become interested in the connection between chemists across the globe which has led me to create an academic twitter tree.

To continue this academic tree theme, this blog will explore certain strands of the chemistry Nobel Laureate family tree using the Royal Society of Chemistry’s Chemical Connections. The blog will delve into the life and heritage of different chemistry Nobel Laureates and, amongst other things, we shall find out if having a Nobel winner in your lineage could have an effect on your career, for example, does having a Nobel winner in your ancestry mean you are more likely to achieve academic greatness? If there is a Nobel winner that you would like to see featured, please get in touch.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Heather Cassell

Mysteriously abandoned?
©iStock

I love working in the lab. I’m happiest when I’m pottering about among the bottles and the beakers getting on with my work. Most of my experience has been in multi-group labs of varying sizes; all have generally been good fun to work in, with lots of people to talk to who each have different skills and experiences. This can be very useful when you need any help, especially when you are learning new techniques.

One thing you can rely on happening in the lab at some point, especially a large lab used by many groups, is the appearance of Mysteriously Abandoned Glassware. Usually the bottle, beaker, or flask is unlabelled. If you’re lucky enough to have a label, it’s guaranteed to be so faded you can’t read it. Sometimes the glassware contains a colourless liquid; other times a crystalline material, evidence of the previous presence of now long lost liquid. A common variation of the Mysteriously Abandoned Glassware is the flask/beaker of something that has had Virkon (a pink disinfectant) added to it and left in the sink, again with no label in sight to point us to the perpetrator. Over time, the pink Virkon discolours, but the glassware remains Mysteriously Abandoned. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

I’m Heather Cassell (née Stubley). I did a BSc in biochemistry and genetics at the University of Leeds, then I moved to the University of York where I did an MRes in biomolecular sciences followed by a PhD investigating enzyme activity in non-aqueous solvents. I am currently finishing my first postdoc position working as a research fellow in molecular and cell biology at the University of Surrey. The project involves cloning proteins of interest and attaching them to polymers or other nanoparticles then assessing their toxicity and cellular location in liver related cell lines.

I decided to write a ‘life in the lab’ blog strand because I love working as a scientist, especially the time spent in the lab itself – despite the many challenges. It gives me a chance to share my enthusiasm for working as a researcher and all things science-related. I plan to give an early career scientist’s view of life in the lab, balancing work and childcare, procrastination and productivity, research and recreation.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)