Guest post by Rowena Fletcher-Wood

Open your eyes and take a closer look: sometimes that’s all it takes to realise a new invention has been with you all along, stuck, perhaps, to the cuffs of your trousers and the fur of your pointer. Like the burrs of the burdock, evolved to stick to the fur of animals, transporting the seeds far and wide to fall on new ground.

Swiss amateur mountaineer Georges de Mestral had been hunting in the French Alps one summer evening in 1948, when exactly this occurred. He had obviously encountered burrs before, but for the first time his mind connected an observation (the sticky burrs) and an application (fashion) – it was a scientific portmanteau or ‘blend’ of two ideas, contracting their meanings into a single new commodity: Velcro. The name is a portmanteau too, a combination of the French words velour and crochet: the soft fabric side and the hooked. De Mestral had stumbled upon a new way of fixing clothing, but was it such an accident? Louis Pasteur, scientist and inventor of the Pasteurisation process, famously said ‘in the fields of observation, chance favours only the prepared mind.’ He had a point. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Jen Dougan

‘May it be a light to you, in dark places. When all other lights go out.’
J. R. R. Tolkien

Yesterday saw the opening ceremony to mark the start of the International Year of Light (IYL). Today scientists and policy makers will meet in Paris for day two of the celebrations. Designated by the United Nations, the IYL aims to increase awareness about the importance of light in our modern and developing world, such is the breadth of light–based technologies – from biological sensing to next generation light emitting diodes (LEDs). Undoubtedly, our world is enriched by harnessing the energy of light, and one of the core aims of IYL is to focus on the plight of 1.5 billion of the world’s inhabitants for whom sunset means darkness.

Blue light emitting diodes (Blue LED). Image by Gussisaurio at wikipedia (CC-BY-SA)

With little or no access to electrical lighting, many rural communities in the developing world have limited ability to read after sundown, have restricted working hours, and hospitals have to power down the lights in the evening – limiting healthcare options. Many families rely on the use of paraffin or kerosene lamps. This isn’t without problems, kerosene is a flammable hydrocarbon producing toxic fumes when burned and is a significant fire-safety hazard. Attempting to address this, the IYL ‘study after sunset’ campaign seeks to promote the use of solar powered LED lights in the communities that need them most.

Anyone who has handled a traditional incandescent lightbulb can attest to its inefficiency. Producing significant amounts of heat (capable of burning fingers!), incandescent bulbs are economically and environmentally wasteful. But alternatives do exist. LEDs generate far more light, measured in lumens per Watt (lm/W), than standard incandescent or fluorescent lighting (Figure 1). Of course, the use of LEDs helps to reduce bills and energy consumption and, considering that lighting accounts for ~25% of electricity usage in developed countries, that presents a significant reduction. It is their efficiency and bulb lifetime of 100,000 hours (an order of magnitude greater than incandescent bulbs) that may enable LEDs to illuminate lives the world over. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

It’s a new year and therefore a new set of exciting cover art awaits us. Last year gave us some great examples of artistic flair matched with clear science communication, as well as a good few covers that can be described as nothing but bizarre. Either way, they got my attention.

But why do authors want their work on a front cover and what does it actually mean to the scientists who designed them? Instead of surging ahead with my own opinions, I thought that this time I should get some answers from the creators themselves. Focusing on Chemical Science, I tracked down the corresponding authors responsible for some of the cover art during 2014 and asked them a few simple questions to gather a small insight into the minds of these artists.

Why would anyone want to create a cover image?

Well, what’s the point? My first thought was simply about extra exposure. And yes, the overwhelming response I received was about gaining extra attention, raising the visibility of their work and attracting more readers. Everybody seemed to agree on this fact. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Ljiljana Fruk, researching light-activated nanodevices, writes about molecular aesthetics and how a copper nanoparticle became an alien mothership. Ljiljana will speak at this year’s Chemistry World science communication competition prize-giving event in March 2015 about Seeing the invisible.

A few years ago I thought about starting something enjoyable that would inspire the students and researchers in my group to look at the molecules they make and materials they design in a different, more playful way. I wanted them to rethink what they considered failed experiments: batches of irregular nanoparticles, weird looking oils (that should be crystals) or fluorescent cells (that shouldn’t be there).

We started collecting microscopic images and strangely coloured samples, and organised a little internal competition to see who was going to come up with the strangest or most unusual image. Playing and having fun was the key – doing transmission electron microscopy now did not only mean spending some late hours in the lab but also finding that next cool image. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Tessa Fiorini won last year’s Chemistry World science communication competition. Here, she writes about the inspiration for her article by a holiday in Prague, about her time at the prize-giving event and her winner’s trip.

Tessa Fiorini CohenWhen I heard about Chemistry World’s science communication competition last year, I had just come back from a holiday in Prague. The city is a historical hot spot for all things alchemy-related, and it immersed me in a time when chemistry was dark and murky, poorly understood and carried out in secretive underground labs. With this trip still on my mind and the competition’s theme of openness, I knew I had to write about the transition from alchemy to modern chemistry. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post by Rowena Fletcher-Wood

It is Christmastime, and the season of light: everywhere you look, particularly after dark, is the twinkle of hundreds of little lights. As 2015 approaches, the International Year of Light is also being kindled into action – a year designed to make us think about light technologies and global challenges in energy. So let’s start now, and out of the dark.

One of the earliest human light technologies was the match. What do you need to make fire? Oxygen, fuel and an ignition source – simple enough in theory, but not so much in practice. Fires just don’t start spontaneously. Before matches, ignition sources included flint and tinder, or a magnifying glass which, naturally, only worked on sunny days, when you are least in need of fire. But luckily, something was spontaneous: the accidental invention of matches.

Matches had nearly been discovered more than once. Having synthesised phosphorous in 1680, Robert Boyle showed awestruck onlookers how this new material created fire when rubbed with sulfur, but the combustion exercise was never put to practical use and remained merely entertainment for wealthy dabblers. He wasn’t the first to make such novelties either – as far back as 950 AD, Chinese ‘Records of the unworldly and strange’ mention ‘light-bringing slaves’ (later ‘fire-inch sticks’) that use sulfur to create fire fast from a small spark or dying embers. In 1805, a French chemist, Jean Chancel, dipped a wooden splint in sugar, potassium chlorate, and sulfuric acid, creating an explosion. It was expensive, dangerous and gave off a foul, poisonous odour. But all of these were chemical matches: they required mixing the right things together at the right time to create an exothermic reaction. The first friction match was created by accident, by apothecary John Walker in 1826. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Chris Sinclair, whose piece on lasers won the 2012 Chemistry World science communication competition, writes about science and performing arts.

In 2012, I won the first Chemistry World science communication competition for my piece about using lasers to remotely detect methane gas in mines, reducing the risk of disastrous explosions. Having previously worked with lasers for my research, I was aware that 2012 was the 50th anniversary of the invention of the diode laser. Choosing this topic gave me the chance to learn about interesting contemporary applications of lasers in physical chemistry. Emily Stephens, the 2012 runner-up, wrote about gene doping – a topic that was linked to the London Olympic Games, which were of course one of that year’s major events. For both of us, writing about a topical subject with a human angle turned out well. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Quentin Cooper, science journalist and one of the judges for the upcoming Chemistry World science communication competition writes about how in every scientist there is a bit of an artist.

I’ve been asked to write 300 words on the topic of science and art. No problem. Although I can sum it up in one: scientists.

The term ‘scientist’ was only coined about 180 years ago to overcome a problem caused by the then newly formed British Association for the Advancement of Science, more recently known as the BA and more recently still as the British Science Association. These days it is celebrated as one of the oldest and most prestigious public-facing scientific bodies in the world, making science more comprehensible and accountable, and encouraging engagement across society and between disciplines. But back in the early 1830s, their meetings attracted a ragtag group of biologists, geologists, naturalists and others across the sciences, and nobody knew quite what to collectively call them. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Guest post from Tom Branson

Sometimes all the computer graphics in the world can’t make up for a good old hand drawn image. These sketches may never appear in shining lights on 10 metre billboards but they are often simple and clear enough to show you exactly what’s going on. That straightforward approach and a couple of other tricks were recently used to great effect for an article on the cover of Organic and Biomolecular Chemistry.

The cover shows ChemDraw images, a drawing of a cassava plant, and photos of the actual experiments to give a nice overview of the research. This kind of image is great for direct outreach and more literal communication of the scientific story. In an instant, anyone can see that the research involves taking something out of the plant, mixing in some other chemicals and observing a colour change. The graphic hooks you in with pretty colours, then offers something to get your grey matter around with the chemical structures. Check out the two corrinoid structures binding to either water or cyanide – that small difference creates the colour change. And as most people know, cyanide is the bad guy. If you would like to know more about the research itself, see the article in Chemistry World.

The image itself was designed by Rene Oetterli, a post-doctoral research assistant from the group of lead author Felix Zelder.  The work has a simple overall story to tell and this cover image communicates it very effectively. (more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emily Stephens writes about the how and why of her piece on gene doping, which was selected for the runner-up prize in the 2012 Chemistry World science communication competition.

I started writing my article for the 2012 competition just after the London Olympics had finished. There was a lot of controversy surrounding the legitimacy of some of the competing athletes’ achievements, in particular Nadzeya Ostapchuk, who was stripped of her gold medal following a drug test. While doping has been prevalent in competitive sport since the 1960s, I found the relatively new concept of gene doping fascinating.

Gene doping is extremely hard to detect, so future sporting events could potentially be won based on which country is most advanced in genetic medicine rather than the athletes’ natural sporting ability.

(more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Next Page »